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ABSTRACT 

The Center for Intelligent Machines and Robotics (CEVIAR) at the University of Florida 
has worked in the area of autonomous ground vehicles (AGVs) for several years under the 
sponsorship of the Air Force Research Laboratory at Tyndall Air Force Base, Florida. The 
objective of the work is to develop technological capabilities that can be applied to a variety of 
Air Force needs and application areas. Recently, one of these capabilities required the design of 
a modular architecture for autonomous vehicle navigation. This new architecture, which is 
currently under development, is called Modular Architecture experimental (MAX). One of the 
unique features of this architecture is a generic message for controlling the motion of any 
autonomous vehicle. This paper describes a control technique, which uses this generic message, 
for navigating various autonomous ground vehicles. 

" The resulting technique uses two fuzzy model reference learning controllers (FMRLCs). 
One FMRLC controls the vehicle linear velocity, and the other controls the vehicle angular 
velocity. Both controllers are designed from parameters that are defined in the MAX interface 
document. They have been implemented and tested successfully on three different vehicles, a 
Kawasaki Mule with Ackerman steering, a K2A robot with three wheel synchronous drive, and a 
tracked vehicle called All-purpose Remote Transport System (ARTS). 

1. INTRODUCTION 

The Center for Intelligent Machines and Robotics (CIMAR) began working with 
autonomous ground vehicles (AGVs) in 1990 and has continued working with them to the 
present day. The focus of this work has been on areas required for automated navigation. These 
areas include path planning, determining vehicle position and velocity, path execution, and 
obstacle detection and avoidance. In 1991, CIMAR completed its first design and 
implementation of a vehicle capable of automated navigation. A Kawasaki MULE 500 all- 
terrain vehicle was modified for computer control and currently serves as a Navigation Test 
Vehicle (NTV) at the University of Florida. A path planner using an A* search algorithm was 
implemented to determine the shortest, obstacle-free path to a goal point.1 An integrated inertial 
navigation unit (TNU) and differential global positioning system (DGPS) provides real-time 
vehicle position and velocity feedback data.2 Path execution was accomplished by mounting 
motors and encoders on the vehicle's steering wheel, throttle, brake and transmission, and by 
using PID controllers to attain a desired response. Finally, an array of sonar sensors, mounted on 



the front of the vehicle, detects any unexpected obstacle in the vehicle's path. The NTV has 
undergone several revisions, over the years, as current technology and research continues to 
advance. Figure 1 shows a picture of the NTV as it is today. 

Figure 1: Navigation Test Vehicle (NTV) 

In addition to the research in the above areas required for navigation, CIMAR has also 
concentrated its efforts in the development of an architecture for AGVs. The main requirement 
specified for this architecture was that it must allow systems to be comprised of self-contained 
submodules, where only the interface of each submodule is defined rigorously. The effect of this 
requirement benefits both the developer and the user. The developer now has a great amount of 
freedom in choosing specific hardware and software for his or her system. And, the user now 
has the ability to scale his or her AGVs functionality by combining different submodules. 
Developing an architecture that meets this requirement was accomplished with a two-step 
process by first determining a list of submodules required to automate a vehicle and then 
determining their interface. The Modular Architecture experimental (MAX), currently being 
developed at the University of Florida, attempts to meet this requirement.3 

MAX currently consists of the following submodules: Position System (POS), Vehicle 
Control Unit (VCU), Path Planner (PLN), Detection and Mapping System (DMS) and Mobility 
Control Unit (MCU). Note that the POS, VCU, PLN, and DMS submodules coincide with the 
four areas mentioned earlier that are required for autonomous navigation. The MCU submodule 
is used to tie these four submodules together into one system. The modular structure of MAX is 
shown in Figure 2. The interface between each submodule defined by MAX allows 
communication with other submodules and/or the user. 

The main task of the MCU is to control the mobility of the vehicle, which is done here by 
executing a planned path. A flow chart of the MCU and the submodules it utilizes is depicted in 
Figure 3, where the MCU begins by receiving a planned path from PLN. Once the MCU has this 
path, it uses position and velocity feedback data from POS and obstacle data from DMS to 
determine the controlled input to the VCU. In the work done here, it is assumed that the 
environment is known and static. Therefore, only the position and velocity feedback is used to 
determine the controlled input to the VCU. 

A unique feature of the VCU is that the input message to control vehicle motion is 
generic for all vehicles. It uses two wrench commands, a propulsive wrench and a resistive 



wrench, to produce and resist vehicle motion, respectively. Each wrench is comprised of a force 
vector,/= \fx,fy,fz], and moment vector m = [mx, my, mz]. The values for these two wrench 
commands are determined by first using a path tracking technique based on screw theory called 
vector pursuit5, which calculates the desired linear and angular velocities of the vehicle in order 
to follow the planned path. Then, two adaptive fuzzy controllers are used to track these desired 
velocities. The rest of this paper focuses on the development of these controllers. Section 2 
gives a brief overview of the fuzzy controllers used. Sections 3 and 4 present the development of 
the controllers for the vehicle's linear and angular velocities, respectively. Section 5 shows the 
results of using these controllers on three different vehicles, a steered-wheeled vehicle, a tracked 
vehicle, and a 3-wheel synchronous drive vehicle. Finally, some conclusions are presented in 
section 6. 
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Figure 2: MAX submodule structure Figure 3: MCU flow chart 

2. THEORETICAL BACKGROUND 

There are two general techniques for adaptive control, direct and indirect. Direct 
adaptive control monitors a system's response and then modifies the controller in order to 
achieve a specified desired performance. On the other hand, indirect adaptive control monitors a 
system's response in order to identify parameters of the system's model. The controller is 
designed as a function of these model parameters to achieve a specified desired performance. 
The controller used here is called fuzzy model reference learning controller (FMRLC)6, which is 
a direct adaptive controller. A block diagram of this controller is shown if Figure 4. This section 
is intended to give a brief summary of the FMRLC. 

The main parts of a FMRLC are the fuzzy controller, the plant, reference model, and the 
learning mechanism. A fuzzy controller typically involves three steps: fuzzification, inference, 
and defuzzification. The fuzzification step takes the crisp inputs of the process and converts 
them to linguistic variables. The inference step uses these linguistic variables to decide the best 
course of action based on the knowledge of an expert, which is stored in a rule-base made up of a 
set of if-then statements. The defuzzification step takes the linguistic results of the inference step 
and converts them to crisp outputs. These crisp outputs of the controller are inputs to the plant, 
which is simply the system to be controlled. The reference model gives the desired system 
response based on the current input. The main constraint on the reference model is that it must 



be reasonable. It is not reasonable to expect a system to achieve a better performance than what 
the system is capable. Every system has its limitations, and these limitations must be considered 
when choosing the reference model. Finally, the learning mechanism uses the outputs of the 
plant and of the reference model in order to calculate an error between the desired and actual 
response. This error is used then to decide how to modify the rule-base of the fuzzy controller in 
order to drive the error to zero. 
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Figure 4: FMRLC Block Diagram 

Once the reference model is determined, a discrete error signal can be calculated by: 

e(kT)=ym(kT)-y(kT), 

where e(kT) is the current error, ym(kT) is the output of the reference model, y(kT) is the output of 
the system, and T is the sample time. Depending on the system characteristics, it may also be 
useful to calculate the discrete change in error by: 

(1) 

c(kT) 
e(kT)-ejkT-T) 

T 
(2) 

where c{kT) is the change in error, e{kT) is the current error from equation (1), and e(kT-T) is the 
error calculated on the previous time sample. Then, these results and any other system data are 
used to determine the necessary changes to the process inputs, p(kT), by the learning mechanism. 

The learning mechanism is made up of a fuzzy inverse model and a rule-base modifier. 
The purpose of the fuzzy inverse model is to take the calculations e(k T) and c(kT) and determine 
how to change the process input, u(kT), in order to drive e(kT) to zero. The output of the fuzzy 
inverse model is the desired change in process input and is represented by p(kT). First, the inputs 
are fuzzified by membership functions specified by the designer. The inference mechanism then 



uses rules such as, if the error is "positive small" and the change in error is "zero," then the 
change in process input is "negative small." It is referred to as the fuzzy inverse model because 
these rules typically depend on the plant dynamics. Finally, the output, p(kT), is defuzzified by 
the center of gravity (COG), center-average or some other defuzzification technique. Then the 
output, p(kT), is used to modify the controllers rule-base. 

In order to modify the fuzzy controller's rule-base, which rules are active must first be 
determined. In other words, determine which rule's certainty is greater than zero: 

r^ premise^ ' (3) 

Then, for all the rules that are active, the center of the wth output membership function is 
adjusted by: 

bm(kT) = bm(kT-T) + p(kT), (4) 

where bm(kT) is the current center of the mth output membership function, bm(kT-T) is the center 
of the mth output membership function at the previous time sample, andp(kT) is the desired 
change in process input that was calculated by the inverse model. 

3. LINEAR VELOCITY FMRLC 

The first task in designing a controller is to determine its inputs and outputs. Recall that 
under the MAX architecture, the propulsive and resistive wrenches are used to control the 
AGV's motion. Each wrench is made up of a force vector,£= [fx,fy,fz], and a moment vector, m 
= [mx, my, mz\ The propulsive wrench is used to propel the AGV in the direction of the force or 
about the axis of the moment. Since, by the careful selection of the vehicle's reference frame, 
the only term that has an affect on the linear velocity isfx, it is chosen to be the linear velocity's 
controller output. One of the inputs to the controller is obviously the desired linear velocity, vx,d- 
A second input to the controller is the vehicle pitch, 0y, since it can have a substantial effect on 
the AGV's linear velocity. A block diagram of the FMRLC for the linear velocity is given in 
Figure 5. 

From Figure 5, the controller's input vXtd(kT) is the desired linear velocity, and the 
controller's input 6y(kT) is the vehicle's pitch. The gains, gv and gg, are used to normalize the 
inputs. By doing this, both inputs are fuzzified using the membership functions given in Figure 
6. Therefore, the gain gv is chosen to be l/vmax, where vmax is the maximum velocity of the AGV, 
and the gain ge is chosen to be l/9y>max, where 6y,max is the maximum allowable pitch. Both of 
these terms, the maximum velocity and the maximum allowable pitch, are available from the 
VCU configuration message under the MAX architecture. 

The controller's outputfx(kT), in Figure 5, is the first term in the propulsive wrench. 
Using the output membership functions shown in Figure 7, the output of the inference 
mechanism is normalized also. The gain gf is used to scale this output to allow the controller to 
command the entire range of the term 7*. In the MAX architecture, the term/* has the range from 
-100 to 100 percent, and therefore the gain gf is chosen to be 100. 
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Figure 6: Normalized Input Membership Functions Figure 7: Normalized Output Membership Functions 

Now that the inputs and the output of the fuzzy controller are defined, the rule-base for 
the inference mechanism must be defined. Typically, if little or nothing is known about the 
plant's characteristics, each rule's consequent is initialized to the linguistic variable "zero." This 
requires the controller to completely learn the system it is trying to control. By using the MAX 
architecture, an important conclusion about the plant's characteristics can be made. This 
conclusion is that increasing the \evmfx should have the general characteristic of increasing vx, 
and decreasing the termfx should have the general characteristic of decreasing vx. With this in 
mind, and using the membership function defined in Figures 6 and 7, the mle base for the fuzzy 
controller is initialized with the rules given in Table 1. 

It is assumed in Table 1 that the pitch has no affect on the control of the AGV's linear 
velocity. This assumption is made initially because there is not enough information about the 
plant's characteristics to make a conclusion on how the pitch will affect the control of the AGV's 
linear velocity. Therefore, the controller must learn how to control the plant for different vehicle 
pitches. 



Table 1: Linear Velocity Initial Rule-Base 

Force Desired Linear Velocity 
N5 N4 N3 N2 Nl Z PI P2 P3 P4 P5 

Pitch 

N5 N5 N4 N3 N2 Nl Z PI P2 P3 P4 P5 
N4 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
N3 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
N2 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
Nl N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
Z N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
PI N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P2 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P3 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P4 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P5 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 

The reference model takes the desired linear velocity as input and outputs an estimate of 
what the vehicle linear velocity should be. The model implemented here is a simple first order 
model. This was chosen for its simplicity where only one model variable needs to be 
determined, the time constant. This time constant is set to the system's average response time to 
various/^ commands. 

The learning mechanism uses the linear velocity calculated by the reference model and 
the current AGV linear velocity to calculate an error, e(kT) and change in error, ce(kT), The 
error is scaled by the gain ge and the change in error is scaled by gce in order to use the 
membership functions given in Figure 6 for fuzzification. These gains are determined by the 
maximum possible errors. Therefore ge is set to Vvdesired and gce is set to Th desired, where v'desired is 
the desired tracking speed and T is the time interval. The rules used by the inference mechanism 
are given in Table 2. The conclusions of the rule-base are defuzzified using the COG and the 
membership function in Figure 7. And finally, the gain gp is used to control how fast the system 
adapts and is left as a tuning parameter. 

Table 2: Learning Mechanism Rule-Base 

Change in 
process input 

Change in error 
N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 

Error 

N5 N5 N5 N5 N5 N5 N5 N4 N3 N2 Nl Z 
N4 N5 N5 N5 N5 N5 N4 N3 N2 Nl Z PI 
N3 N5 N5 N5 N5 N4 N3 N2 Nl Z PI P2 
N2 N5 N5 N5 N4 N3 N2 Nl Z PI P2 P3 
Nl N5 N5 N4 N3 N2 Nl Z PI P2 P3 P4 
Z N5 N4 N3 N2 Nl Z PI P2 P3 P4 P5 
PI N4 N3 N2 Nl Z PI P2 P3 P4 P5 P5 
P2 N3 N2 Nl Z PI P2 P3 P4 P5 P5 P5 
P3 N2 Nl Z PI P2 P3 P4 P5 P5 P5 P5 
P4 Nl Z PI P2 P3 P4 P5 P5 P5 P5 P5 
P5 Z PI P2 P3 P4 P5 P5 P5 P5 P5 P5 

7 



4. ANGULAR VELOCITY FMRLC 

The angular velocity FMRLC uses the block diagram given in Figure 8, which is very 
similar to the linear velocity FMRLC block diagram. Here the controller reference input, 
C0z,d(kT), is the current desired angular velocity, and the input v(kT) is the vehicle's current linear 
velocity. The linear velocity is chosen as an input since it is expected that more slip will occur 
between the vehicle tires and the ground at higher speeds, and therefore affect the vehicle's 
angular velocity. The gains, gw and gv, are used again to normalize the inputs. The gain gm is 
chosen to be 1/C0z,max, where az,max is the vehicle's maximum angular velocity. Similarly, the 
gain gv is chosen to be \lvmax where vmax is the vehicle's maximum linear velocity. Again, the 
information required in order to calculate these gains are given either by the Vehicle Control 
Unit (VCU) configuration report or measured by the Position system (POS). 
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Figure 8: Angular Velocity FMRLC Block Diagram. 

For vehicles with a nonzero minimum turning radius, coZi„u 

the AGV's current linear velocity and its minimum turning radius: 
• turns out to be a function of 

föz,max   =■ 
r . mm 

(5) 

Note that when the current linear velocity is equal to zero, the gain gw for vehicles with a 
nonzero minimum turning radius is infinite. This is because the vehicle is not capable of turning 
unless the linear velocity is nonzero. Since it is impossible for the vehicle to turn unless the 
linear velocity is nonzero, the gain gw is set to zero if the linear velocity is zero. This is done so 
that the controller does not attempt to adapt for this case. 



The controller's output in Figure 8, mz(kT), is the last term of the propulsive wrench. 
Using the output membership functions shown in Figure 7, the output of the inference 
mechanism is normalized. The gain gm is used to scale this output to allow the controller to 
command the entire range of the term mz. In the MAX architecture, the term mz also has the 
range from -100 to 100 percent, and therefore the gain g,„ is chosen to be 100. 

Just as the MAX architecture provided information for the linear velocity controller, it 
also provides some information about the angular velocity in order to initialize the rule-base of 
its controller. It is expected that by increasing the term mz in the propulsive wrench, the AGV's 
angular velocity will increase. And, by decreasing the term mz in the propulsive wrench, the 
AGV's angular velocity will decrease. This is, of course, with the exception when the linear 
velocity is equal to zero as mentioned earlier. With this information, and using the membership 
functions defined in Figures 6 and 7, the rule-base for the angular velocity controller is initialized 

Table 3 : Angular Velocity Initial Rule-Base 

Moment Desired Angular Velocity 
N5 N4 N3 N2 Nl Z PI P2 P3 P4 P5 

Linear 
Vel. 

N5 N5 N4 N3 N2 Nl Z PI P2 P3 P4 P5 
N4 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
N3 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
N2 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
Nl N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 

Z N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 

PI N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P2 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P3 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P4 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 
P5 N5 N4 N3 N2 Nl z PI P2 P3 P4 P5 

with the rules given in Table 3. 

It is assumed in Table 3 that the linear velocity has no affect on the control of the AGV's 
angular velocity. This assumption is made initially because there is not enough information 
about the plant's characteristics to make a conclusion on how the linear velocity will affect the 
control of the AGV's angular velocity. Therefore, the controller must learn how to control the 
plant for different linear velocities. 

The reference model here takes the desired angular velocity as input and outputs an 
estimate of what the current vehicle angular velocity should be. The model implemented, like 
the linear velocity controller, is also a simple first order model. Again, this was chosen for its 
simplicity where only one model variable needs to be determined, the time constant. This time 
constant is set to the system's average response time to various mz commands. 

The learning mechanism uses the angular velocity calculated by the reference model and 
the current AGV angular velocity to calculate an error, e(kT) and change in error, ce(kT). The 
error is scaled by the gain ge and the change in error is scaled by gce in order to use the 



membership functions given in Figure 6 for fuzzification. These gains are determined again by 
the maximum possible errors. Therefore ge is set to 1/cOdesired and gce is set to TI(Odesired, where 
(Odesired is the desired angular velocity and T is the time interval. The rules used by the inference 
mechanism are given in Table 2. The conclusions of the mle-base are defuzzified using the 
COG and the membership function in Figure 7. And finally, the gain gp is used to control how 
fast the system adapts and is again left as a tuning parameter. 

5. IMPLIMENTATION RESULTS 

In addition to implementing the FMRLCs on the NTV for testing, they were implemented 
also on a K2A robot developed by Cybermotion, Inc., of Roanoke, Virginia (See Figure 9), and 
on an All-Purpose Remote Transport System (ARTS) (See Figure 10), which is a vehicle used by 
the United States Air Force Research Laboratory for research and design. 

RODOHCS 

Figure 9: Cybermotion's K2A Figure 10: All-purpose Remote Transport System 

Two different paths are used to test the two FMRLCs. A "U" shape path is used to test 
going from a straight section into a curve, and from a curve back into a straight section. And, a 
figure eight path is used to test going from a right curve into a left curve, and from a left curve 
into a right curve. 

First, the FMRLCs were implemented on the NTV. The test paths were executed at 
speeds from 2 to 4 mps going forward, and it was also executed going backwards for the same 
range of speeds. Figures 11 and 12 show typical results of the NTV tracking a "U" shape path 
and a figure eight path, respectively. In both runs, the desired vehicle speed was set to 2 mps and 
the average vehicle position error was about 0.03 m and, the average velocity error was 
approximately 0.03 mps. Next, the FMRLCs were implemented on the K2A and tested. Typical 
results of these tests are shown in Figures 13 and 14. The desired velocity used for each of these 
tests was 0.15 mps. The average position error was 0.01 m and the average velocity error was 
0.005 mps. Finally, the FMRLCs were implemented on the ARTS and tested using a "U" shape 
path and a figure eight path. The ARTS vehicle was akeady under tele-operated control. Its 
VCU was simply modified to accept wrench commands defined by MAX, and within one day it 
was navigating autonomously. Figures 15 and 16 show typical results of these tests, 
respectively, where the desired velocity was set to 1.4 mps. 

10 
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6. CONCLUSIONS 

In order to automate the navigation of a vehicle, controllers are required to track a desired 
velocity and a desired turning rate. A fuzzy model reference learning controller (FMRLC) was 
implemented to track the desired velocity, assuming that the user would set this tracking speed. 
This controller was designed from parameters of known vehicle characteristics such as the 
maximum speed and the maximum allowable pitch. A second FMRLC was implemented to 
track the desired vehicle turning rate. Again, this controller was designed from parameters of 
known vehicle characteristics such as the maximum turning rate and the maximum speed. Both 
controllers were implemented on the NTV and successfully tested. 

By designing the controllers in term of known vehicle characteristics, transferring them 
to different vehicles was greatly simplified. In addition to implementing the FMRLCs on the 
NTV, they also were implemented and tested on a Cybermotion K2A and on an All-purpose 
Remote Transport System. In each case, the time required to implement the controllers required 
less than a day. 
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